Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cell Neurosci ; 109: 103562, 2020 12.
Article in English | MEDLINE | ID: mdl-32987141

ABSTRACT

Abnormal dendritic arbor development has been implicated in a number of neurodevelopmental disorders, such as autism and Rett syndrome, and the neuropsychiatric disorder schizophrenia. Postmortem brain samples from subjects with schizophrenia show elevated levels of NOS1AP in the dorsolateral prefrontal cortex, a region of the brain associated with cognitive function. We previously reported that the long isoform of NOS1AP (NOS1AP-L), but not the short isoform (NOS1AP-S), negatively regulates dendrite branching in rat hippocampal neurons. To investigate the role that NOS1AP isoforms play in human dendritic arbor development, we adapted methods to generate human neural progenitor cells and neurons using induced pluripotent stem cell (iPSC) technology. We found that increased protein levels of either NOS1AP-L or NOS1AP-S decrease dendrite branching in human neurons at the developmental time point when primary and secondary branching actively occurs. Next, we tested whether pharmacological agents can decrease the expression of NOS1AP isoforms. Treatment of human iPSC-derived neurons with d-serine, but not clozapine, haloperidol, fluphenazine, or GLYX-13, results in a reduction in endogenous NOS1AP-L, but not NOS1AP-S, protein expression; however, d-serine treatment does not reverse decreases in dendrite number mediated by overexpression of NOS1AP isoforms. In summary, we demonstrate how an in vitro model of human neuronal development can help in understanding the etiology of schizophrenia and can also be used as a platform to screen drugs for patients.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Dendrites/ultrastructure , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Neurons/cytology , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Cells, Cultured , Clozapine/pharmacology , Drug Evaluation, Preclinical , Fluphenazine/pharmacology , Gene Expression Regulation/drug effects , Glutamic Acid/physiology , Haloperidol/pharmacology , Humans , Induced Pluripotent Stem Cells/metabolism , Ion Channels/physiology , Nerve Tissue Proteins/physiology , Neural Stem Cells/metabolism , Neurons/drug effects , Neurons/metabolism , Oligopeptides/pharmacology , Patch-Clamp Techniques , Protein Isoforms/physiology , Schizophrenia/etiology , Schizophrenia/genetics , Serine/pharmacology
2.
Article in English | MEDLINE | ID: mdl-32425764

ABSTRACT

Action potentials arriving at a nerve terminal activate voltage-gated calcium channels and set the electrical driving force for calcium entry which affects the amount and duration of neurotransmitter release. During propagation, the duration, amplitude, and shape of action potentials often changes. This affects calcium entry, and can cause large changes in neurotransmitter release. Here, we have used a series of amplitude and area matched stimuli to examine how the shape and amplitude of a stimulus affect calcium influx at a presynaptic nerve terminal in the mammalian brain. We identify fundamental differences in calcium entry following calcium channel activation by a standard voltage jump vs. an action potential-like stimulation. We also tested a series of action potential-like stimuli with the same amplitude, duration, and stimulus area, but differing in their rise and decay times. We find that a stimulus that matches the rise and decay times of a physiological action potential produces a calcium channel response that is optimized over a range of peak amplitudes. Next, we determined the relative number of calcium channels that are active at different times during an action potential, which is important in the context of how local calcium domains trigger neurotransmitter release. We find the depolarizing phase of an AP-like stimulus only opens ~20% of the maximum number of calcium channels that can be activated. Channels continue to activate during the falling phase of the action potential, with peak calcium channel activation occurring near 0 mV. Although less than 25% of calcium channels are active at the end of the action potential, these calcium channels will generate a larger local calcium concentration that will increase the release probability for nearby vesicles. Determining the change in open probability of presynaptic calcium channels, and taking into account how local calcium concentration also changes throughout the action potential are both necessary to fully understand how the action potential triggers neurotransmitter release.

3.
Curr Biol ; 29(8): 1313-1323.e5, 2019 04 22.
Article in English | MEDLINE | ID: mdl-30982651

ABSTRACT

The striatum is the main input nucleus of the basal ganglia and is a key site of sensorimotor integration. While the striatum receives extensive excitatory afferents from the cerebral cortex, the influence of different cortical areas on striatal circuitry and behavior is unknown. Here, we find that corticostriatal inputs from whisker-related primary somatosensory (S1) and motor (M1) cortex differentially innervate projection neurons and interneurons in the dorsal striatum and exert opposing effects on sensory-guided behavior. Optogenetic stimulation of S1-corticostriatal afferents in ex vivo recordings produced larger postsynaptic potentials in striatal parvalbumin (PV)-expressing interneurons than D1- or D2-expressing spiny projection neurons (SPNs), an effect not observed for M1-corticostriatal afferents. Critically, in vivo optogenetic stimulation of S1-corticostriatal afferents produced task-specific behavioral inhibition, which was bidirectionally modulated by striatal PV interneurons. Optogenetic stimulation of M1 afferents produced the opposite behavioral effect. Thus, our results suggest opposing roles for sensory and motor cortex in behavioral choice via distinct influences on striatal circuitry.


Subject(s)
Choice Behavior/physiology , Corpus Striatum/physiology , Motor Cortex/physiology , Somatosensory Cortex/physiology , Animals , Female , Interneurons/physiology , Male , Mice , Neural Pathways/physiology
4.
Elife ; 72018 10 30.
Article in English | MEDLINE | ID: mdl-30375975

ABSTRACT

Presynaptic neuronal activity requires the localization of thousands of proteins that are typically synthesized in the soma and transported to nerve terminals. Local translation for some dendritic proteins occurs, but local translation in mammalian presynaptic nerve terminals is difficult to demonstrate. Here, we show an essential ribosomal component, 5.8S rRNA, at a glutamatergic nerve terminal in the mammalian brain. We also show active translation in nerve terminals, in situ, in brain slices demonstrating ongoing presynaptic protein synthesis in the mammalian brain. Shortly after inhibiting translation, the presynaptic terminal exhibits increased spontaneous release, an increased paired pulse ratio, an increased vesicle replenishment rate during stimulation trains, and a reduced initial probability of release. The rise and decay rates of postsynaptic responses were not affected. We conclude that ongoing protein synthesis can limit excessive vesicle release which reduces the vesicle replenishment rate, thus conserving the energy required for maintaining synaptic transmission.


Subject(s)
Brain/metabolism , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Action Potentials/drug effects , Animals , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Kinetics , Mice, Inbred C57BL , Neurons/drug effects , Neurons/physiology , Presynaptic Terminals/drug effects , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Ribosomes/drug effects , Synapses/drug effects , Synapses/metabolism , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism , Time Factors
5.
J Neurosci ; 36(45): 11559-11572, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27911759

ABSTRACT

At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT: The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes.


Subject(s)
Action Potentials/physiology , Calcium Signaling/physiology , Calcium/metabolism , Neurons/physiology , Neurotransmitter Agents/metabolism , Synaptic Transmission/physiology , Animals , Feedback, Physiological/physiology , Female , Male , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...